Nakajima整骨院Official Blog

世界中の治療やトレーニングを研究。2013年アスリートの治療に特化したNakajima整骨院を横浜市に開業。🇦🇹2017~SV Horn (Austria) Physio/柔道整復師/NASM-PES/NSCA-CPT/初級がい者スポーツ指導員/WFA Periodization Specialist。

クレアチン

パワーパフォーマンス向上のための長期的なクレアチンモノハイドレートの利用(典型的なローディング期は、クレアチン20g(体重1㎏当たり約0.3g/日)を4等分し、1日4回およそ5日間にわたり投与する)

クレアチンモノハイドレート(いわゆるクレアチン)は、高強度エクササイズの能力増強を目指すアスリートが入手できる、最も効果的なサプリメントになります。 アスリートがトレーニングをして向上させる必要のある身体特性の多くは、クレアチンの補給によって…

パフォーマンスにアップに役立つMIPS(筋力やパワーに及ぼすパフォーマンスの改善は、クレアチンモノハイドレート、βアラニン、カフェイン、分岐鎖アミノ酸(BCAA)とされる)

若年アスリートの間では、MIPSなどのエルゴジェニックサプリメントの定期的な摂取が、2010年以降、64%も増加しました。 市販のMIPSの増加とアスリートによるこれらの製品の増加にもかかわらず、それらの製品が筋力やパワーなどに及ぼすパフォーマンスの改善…

クレアチンの摂取とトレーニング(筋クレアチンとクレアチンリン酸の濃度が上昇し、除脂肪体重、筋力、スプリントパフォーマンス、パワー、力の立ち上がり速度、筋の直径などが増大する)

Kreiderがクレアチンに関するクレアチンの研究では試合中のアスリートや大学生の上級アスリートを対象として、パフォーマンスに及ぼすクレアチンサプリメントの効果を評価しました。 発表された結果からは、クレアチンの摂取が、フットボール、アイスホッケ…

クレアチン(筋内のクレアチンリン酸貯蔵量を増やすことは、高強度エクササイズのパフォーマンスに関与するホスファゲン機構で細胞の生体エネルギーを高める)

クレアチン クレアチニンの基本情報 クレアチンは現在、筋力/パワー系アスリートのための他の様々なスポーツ栄養サプリメントとの比較に用いられる基準サプリメントになります。 実際、国際スポーツ栄養学会(International Society of Sport Nutrition)が…

Tabata Protocolとは(運動後に続く酸素摂取量の高値は分泌が急増するカテコールアミン等の血中濃度が長く運動前の値に戻らないことによる心拍数の高値や、筋のナトリウム、カリウム、ATPase等が高値を取ることに関係する)

従来、無酸素性エネルギー代謝量は、酸素負債(Oxygen Deficit)により定量評価されてきました。 酸素負債とは、運動後に長く続く安静時よりも高い酸素摂取量になります。 一方、酸素借とは、最大下の同一運動強度で運動を行っている場合に、運動初期に観察さ…

L-アルギニンサプリメントの摂取(L-アルギニンは、NOシンターゼ(一酸化窒素合成酵素)によってNOに変換され、その結果一時的な血管拡張をもたらす)

L-アルギニンとは L-アルギニンは準必須アミノ酸で、大抵のNO誘発サプリメントの有効成分として知られています。 この種のサプリメントは、特にスポーツ選手やボディビル選手の間で人気が高く、L-アルギニンがパフォーマンスや筋肥大に役立つ可能性があると…

アルギニン(2型糖尿病お客において、血圧と血糖値を低下、インスリン感受性を高め、低糖質食中のタンパク質の異化作用を抑制する)

アルギニンとは グルタミンとプロリンから合成されるアルギニンは条件付きでのEAA(必須アミノ酸)になり、アルギニンは近年、一酸化窒素(NO)の増大を宣伝し販売されているサプリメントに含まれています。 L-アルギニンにはタンパク質、尿素、クレアチニンの合…

マグネシウムのエネルギー生成の調節(ATP-Mg複合体を形成し、酵素上の活性部位に基質を固定、反応を触媒し、代謝経路の速度を高めることによりエネルギー生成に寄与している)

エネルギー生成におけるマグネシウム エネルギー生成にも、マグネシウム(Mg2+)の存在が影響を及ぼしています。 具体的には、Mg2+は代謝経路における主要酵素の活性化を促進し、ATP生成の補因子として機能し、赤血球の細胞膜構造を安定化させることでO2輸送…

生理学的にクレアチン、それともクレアチンリン酸を摂取するほうが有効なのか?(血液中から細胞内に吸収されるのはクレアチンである)

クレアチンリン酸はヨーロッパでは、心臓の施術薬として正式に採用されていた歴史があり、生体内のメカニズムを考えた場合、クレアチンリン酸は重要な働きを担っています。 クレアチンを摂取することで生体内でクレアチンリン酸が形成され、その後、ATP(アデ…

アスリートの回復のための栄養とは(糖質摂取の種類により血中乳酸濃度、グリコーゲン再合成、筋損傷の回復に影響する)

運動パフォーマンスに関与する栄養 グリコーゲンは、長時間にわたる中強度から高強度の運動中の主要なエネルギー源になります。 さらに、筋肉内の筋グリコーゲンの枯渇は疲労に直接関係し、パフォーマンスに影響を及ぼします。 したがって、あらゆるレベルの…

代謝ストレスと筋肥大(乳酸、水素イオン、無機リン酸塩、クレアチンその他の代謝産物の蓄積が筋肥大を起こす)

代謝ストレスと筋タンパク同化作用 多数の研究により、運動によって起こる代謝ストレスがタンパク同化作用の役割を果たすことが裏付けれています。 一部の研究者は、トレーニングに対する筋肥大反応を効率的に引き出すために、代謝産物の蓄積のほうが、大き…

クレアチン摂取の有効性(どれだけミトコンドリアがあって、どれだけ運動中にクレアチンリン酸を作れるかということのほうが、より重要である)

クレアチンリン酸(PCr)は、クレアチンとリン酸とが結びついてできます。 クレアチンを摂取すると、特に「高強度の競技に有利になる」、ということはよくいわれています。 効果があるという研究者の意見は、①クレアチンを摂ると筋に取り込まれ、クレアチン…

筋収縮のエネルギー・非乳酸性機構と乳酸性機構(無酸素性機構)

筋肉が収縮する際の直接的なエネルギー源は、ATP(アデノシン三リン酸)になります。 このATPは筋肉の中に少量しか含まれていないため、運動を持続するにはいろいろな化学的なメカニズムを通じて、筋線維内でATPを作り出さなければなりません。 これを「ATP…

筋収縮と水素イオン(筋疲労を抑えるには水素イオンの発生を抑えるか、発生してもそれを除去すれば良い)

phの低下は、ATPの原料の一つであるクレアチンリン酸の筋肉内での量をも低下させてしまいます。 これもATP再合成量の減少に結びつきます。 さらに、解糖系つまり糖を燃やしてATPを再合成する機構にもマイナスの影響を与えます。 現象面としての筋疲労、筋肉…

筋疲労を防ぐ方法とは:重曹(NaHCO3)とクレアチン

筋疲労の原因は、筋収縮の結果発生する水素イオンになり、この水素イオンの発生を抑えるか、あるいは発生したものを中和すれば筋疲労を防ぐ(緩和)ことができます。 筋疲労を防ぐ一番簡単な方法は、筋活動のレベルを落とすこと(筋出力の値を落とす)にな…

運動前・運動中の分岐鎖アミノ酸(BCAA)摂取の生理学的効果

20種類のアミノ酸の中でバリン、ロイシン、イソロイシンは分岐鎖アミノ酸(balanceed-chain amino acids;BCAA)に分類される必須アミノ酸です。 ※筋肉タンパク質中に含まれるアミノ酸で、自然界の多くのタンパク質にはバリン、ロイシン、イソロイシンがほぼ1…

クレアチン摂取によるクレアチンリン酸増加と筋能力の生理学的変化(垂直跳び、等速性筋収縮、ベンチプレスの最大挙上負荷など、単発のパフォーマンスが増大(5~15%))

クレアチンリン酸が増えることは、ハイパワーの持続力が増大することを意味します。 通常の濃度のアデノシン三リン酸とクレアチンリン酸で約8秒間の全力運動が可能ですので、クレアチンリン酸量が20%増加すれば、これが約10秒間に延長することになります。 …

サプリメントに期待される生理学的効果:クレアチン、β-HMB(β-hydroxy-β-methylbutyrate)

クレアチン 1998年前後からスポーツ史上最大の関心と市場を得たスポーツサプリメントになり、基礎体力のパワーとスプリントを増強する効能を持つと言われています。 クレアチンは高エネルギーリン酸結合してクレアチンリン酸となり、筋肉運動のエネルギー源…

筋力を決める生理学的要因

身体が発揮できる最大筋力を決める要因には①筋横断面積、②神経系の機能、③筋に占めるFT線維(タイプⅡ線維、速筋)の割合の三者があります。 ※このうち③は主に遺伝的に決定され、レジスタンストレーニングによって大きくは変化しないので、トレーニングの主目…

無酸素性トレーニングの生理学・生化学的効果(ATP-PCr系・乳酸系への影響)

一口にトレーニングの「強度」「継続時間」「休息時間」により効果が異なります。 「フォスファゲン系(ATP-PCr系)」は疲労困憊にいたる供給時間の短いエネルギー供給機構であり、「速い解糖系(乳酸系)」は比較的長く速いエネルギー供給機構の2つに分け…

筋疲労と筋持久力の生理学的反応と神経系の相関関係

「疲労(fatigue)とは、作業、あるいは運動をしていくことによって、身体各部の器官や組織のエネルギーの消耗あるいは調整の低下により機能の減退が起こり、これが全体として作業や運動の成果(performance)を低下させるようになったときの状態で、多くの…

競技時の無酸素的運動と有酸素性エネルギーの供給機構の重要性

無酸素的運動 脳から発した運動の命令は神経の線維を経由して筋肉に達して神経終盤から筋肉に対してアセチルコリンを分泌します。 これにより筋細胞中のアデノシン二三リン酸(ATP)がアデノシン二リン酸(ADP)とリン酸に分解されます。 この分解時のエネル…

高強度レジスタンストレーニング後の回復のための糖質の種類の選択

回復のための糖質の種類 アスリートが運動後に摂取するCHOの種類は、グリコーゲンの再合成の速さに影響を及ぼします。 グルコース(ブドウ糖)/スクロース(ショ糖)を含む食物やグリセミック指数の高い食品および飲料が理想です。 グリセミック指数の高い食…