Nakajima整骨院Official Blog

世界中の治療やトレーニングを研究。2013年アスリートの治療に特化したNakajima整骨院を横浜市に開業。🇦🇹2017~SV Horn (Austria) Physio/柔道整復師/NASM-PES/NSCA-CPT/初級がい者スポーツ指導員/WFA Periodization Specialist。

グルコース

糖質補給とスキルパフォーマンス(VO2maxの55~75%で長時間(90分超)運動すると、グルコースと筋グリコーゲンが大きく減少する)

糖質補給のタイミング 研究によると、アスリートは試合の前と最中にCHO(糖質)を摂取することによって、体力面と持久力面での効果が期待できるとみられています。 しかし、その基質が競技の技術面に直接的効果を発揮するかどうかはまだ不明といわれています。…

亜硝酸塩の運動パフォーマンスへの影響(葉物野菜とBRに多く含まれる硝酸塩は、筋の収縮性の増大、血圧低下をもたらす低酸素性血管拡張、さらに運動中の酸素需要の減少など一連の生物学的反応をもたらす)

亜硝酸塩の生理学反応 あらゆる野菜、特に葉物野菜とBRに多く含まれる硝酸塩は、筋の収縮性の増大、血圧低下をもたらす低酸素性血管拡張、さらに運動中の酸素需要の減少など一連の生物学的反応をもたらすことが知られています。 さらに筋活動とグルコースの…

トレーニング前の食物摂取(IMTGの貯蔵量は、タイプⅠ筋線維のほうがタイプⅡ筋線維に比べ、約3倍多く、またそれらの貯蔵量の脂肪分解は65%VO2maxで運動を行ったときに最も促進される)

食物摂取と熱作用 トレーニング前の食物摂取がエクササイズの熱作用を高めることにも注意を要します。 Leeらは、絶食状態と、グルコース(ブドウ糖)/牛乳を含むGM飲料摂取後の状態において、エクササイズの脂肪分解効果を比較しました。 クロスオーバーデザイ…

分析されたMIPSの約60%が血流の改善を目的とした独自配合成分を含む(補助成分の多くを補給した際の血流の増加、特に運動中の血流増加のメカニズムは、大部分が血管拡張効果をもつNO(一酸化窒素、血管拡張物質)の合成を増やすことが中心になる)

血流の改善とMIPS 分析されたMIPSの約60%が血流の改善を目的とした独自配合成分を含み、一般的には「最大ポンプ/血管分布」あるいは「一酸化窒素ブレンド」などのマーケティング用語があります。 血管拡張特性を有し、その結果、血流を改善する効果があると…

マグネシウム不足と影響(酵素効率の低下と細胞の不安定化によって、傷害や疾患、筋衰弱や筋痙攣、低カルシウム血症、グルコースの分解抑制、骨の再形成抑制、血圧上昇を生じる)

マグネシウム摂取の推奨量 Mg2+の推奨摂取量は、男女共1日当たり300~400mgになります。 しかし、欧米型の食生活では、十分な量のMg2+を自然に摂取することは困難であり、アスリートを含む人々の間でMg2+の不足が増加する原因となっています。 マグネシウムの…

タウリン(骨格筋の機械的な収縮閾値を引き上げ、細胞内膜の安定性を促進、筋小胞体からのCa2+の放出を増加させ力発揮を増大させる)

タウリンとは タウリンは心筋および骨格筋における生物学的利用能(Bioavailability)により、また摂食状態により、条件付きでのEAA(必須アミノ酸)になります。 タウリンは、アミノ酸に通常存在するカルボキシ基をもたない、イオウを含む抗酸化特性だけではな…

トレーニングと一酸化窒素:NOの生理学(血小板粘着や白血球付着を低減し、平滑筋の細胞増殖を抑え、神経伝達と筋萎縮/肥大を調節し、衛星細胞の増殖を刺激し、血流と免疫防御を向上させる)

一酸化窒素とは 一酸化窒素(NO)は、平滑筋の血管弛緩をもたらすことが発見され、そのため、当初は内皮由来弛緩因子と呼ばれていました。 NOは、一酸化窒素合成酵素として知られる酵素群により、アミノ酸のひとつであるL-アルギニン、酵素、および様々な補因…

運動中の糖質摂取(グルコース摂取によるパフォーマンス増強効果は、正常血糖を維持しグリコーゲンが枯渇した筋にエネルギー基質を供給する)

エクササイズ中の糖質摂取 エクササイズ中の糖質摂取は、活動中の筋線維が利用できる糖質を増大させ、持久力パフォーマンスやサッカー、フットボールなどの間欠的高強度運動のパフォーマンスにプラスの影響を与えると考えられています。 糖質の種類は考慮す…

血糖値の低下やグリコーゲンの減少が起こると体脂肪が枯渇していなくてもエネルギーが生産できない理由

[caption id="attachment_15948" align="alignnone" width="654"] Friends laughing together while eating in school cafeteria[/caption] 運動のエネルギー源として消費される炭水化物と脂肪の量と割合は、運動の強度と時間の影響を受けます。 エネルギー…

エネルギー生産と三大栄養素(炭水化物と脂肪がエネルギー源、タンパク質は身体の構成成分)

三大栄養素はいずれもエネルギー源となりますが、「炭水化物と脂肪がエネルギー源として主要」になり、「タンパク質はエネルギー源としてよりも、身体の構成成分」として重要になります。 炭水化物は飲食物から摂取されるものの他に、体内にグリコーゲンと…

糖新生(炭水化物摂取量が不足した時、肝臓でピルビン酸・アミノ酸のアラニンからグルコースを合成)

体内に貯蔵されている炭水化物のエネルギー量は約1000Kcalですが、脂肪のエネルギー量は約100倍になります。 炭水化物の体内貯蔵量はそれほど多いとは言えません。 一日に必要なエネルギーは成人では約2000Kcal前後、スポーツ選手が一日のトレーニングで必…

無酸素性エネルギー産生(酸素が無い状況でもATPを合成でき、瞬間的に爆発的なエネルギーを供給できるのは無酸素性エネルギー供給機構によるもの)

軽強度の運動であれば、ATPの再合成に必要なエネルギーは、酸素で食物から得たエネルギー源を酸化してまかないます。 しかし、呼吸を止めても数十秒の全力疾走が可能にもなり、これは酸素が無い状況でもATPを合成できるからになり、瞬間的に爆発的なエネル…

トレーニングと血糖値の関係(低血糖状態でトレーニングをすればするほどグルカゴン分泌により筋肉が落ちていく)

走っていて急に下腹部が痛くなる事、誰もが一度や二度はこんな経験をしたことがあるはずです。 その時の状況として食事直後の時によくおこり、これは食事と関係があるということになり、食事の直後は、消化吸収の為に胃腸が活発に働きます。 胃で細かく分解…

基礎代謝(エネルギー代謝と血中グルコース濃度と脂肪酸酸濃度)

基礎代謝は、空腹時状態の覚醒下、横たわった状態での全身の酸素消費量で測定されます。 ※消化器官が運動していないこと、消化・吸収のためのエネルギー消費がないこと、そして筋肉運動がないことなどが条件になっています。 血液中のグルコース濃度は低め…

持久系競技において後半急速にパフォーマンスが落ちる生理学的メカニズム(サッカー選手の場合、試合終了時に大腿四頭筋に含まれるグリコーゲン量は1/5になる)

競技パフォーマンスと持久力 マラソンや長距離競技以外にも持久力が問われるスポーツ種目があります。 その代表的な種目がサッカー、ハンドボール、バスケットボールなどの球技になり、これらは前後半合わせて最大で90分間運動します。 前半は比較的よく動け…

ファットローディングの食べ方・マラソン1周間のグリコーゲンファットローディング効果を持つ

筋肉の細胞質に脂肪を貯蔵する食べ方(ファットローディング)はどうあるべきかという問題に対して明確な解答はまだ出ていませんが、理論的には、 ①筋肉内での脂肪合成を活性化する ②筋肉細胞膜の酵素リポ蛋白リパーゼを活性化して、血中脂肪を脂肪酸に分解…

脂肪動員を活性化(交感神経系物質、etc)したり抑制(インスリン、グルコースetc)したりする条件

脂肪組織の貯蔵脂肪を分解するホルモン感受性リパーゼは、アドレナリンやノルアドレナリン、副腎皮質ホルモン(ACTH)そして、成長ホルモンなど運動中に分泌が促されるホルモンや、交感神経系を刺激するカフェインなどによって活性化されます。 http://naka…

有酸素性競技において血中脂肪酸量は空腹で上昇し食後に急低下する(ただ一つ、脂肪動員を阻害しない糖分としてフルクトース・果糖)

血中脂肪酸量が高ければ高いほど、筋肉内に取り込まれる脂肪酸量は多くなります。 血中脂肪酸量の日内変動リズムを見ると、食後に著しく低下し、絶食が進むに連れて上昇していきます。 ※食事によりグルコースが入ることで、インスリンも分泌され、サイクリ…

食べる人の身体のコンディションニングが違うと、食後の血糖上昇反応に大きな違いが出てくる(筋肉や肝臓のグリコーゲンの回復に差がつく)

炭水化物食品をどのように食べるか、献立や調理法によって食後の血糖上昇反応が変わることに加えて、同じ食事を食べても、食べる人の身体のコンディションが違うと、食後の血糖上昇反応に大きな違いが出てくることがわかっています。 これは、大学の陸上長…

グリセミック・インデックス(指数)と肥満の生理学

栄養評価基準の一つとして、血糖上昇反応指数(グリセミックインデックス:glycemic index:GI)があります。 これは基本的には炭水化物を含む食品や食事を摂取した後に、血中グルコース濃度が上昇してくる反応の大小を表す指数です。 ※基準となる指数100は…

スポーツ選手が疲労の発生を出来るだけ遅くして、パワー、スピード、スタミナを十分に発揮するための3つの対策

激しい運動では筋肉が酸素を十分にもらえない条件下で収縮するために、グルコースやグリコーゲンが無酸素エネルギー代謝で分解されて乳酸を発生させてしまいます。 ※乳酸は本来、酸素があれば炭酸ガスと水に分解されるもので、したがって、乳酸はグルコース…

試合に向けて生理学的作用を利用した1週間のグリコーゲン・ローディング法

マラソンなどのように、1発の試合に向けて筋肉と肝臓にグリコーゲンを過剰に蓄積するためには、1週間から3日間にわたるグリコーゲン・ローディングの食べ方が実践されます。 これは、筋肉や肝臓のグリコーゲンを出来るだけ枯渇して、グリコーゲン合成酵素の…

高炭水化物食とクエン酸の組み合わせでグリコーゲン回復が一層高まる

欧米の一流選手は、昔から経験的に食後のオレンジジュースでスタミナがアップするのを実感してきました。 ※実際にアメリカのルイス選手、モーゼス選手、ジョイナー選手など多くの選手がビールのジョッキ分(300ml~400ml)のオレンジジュースやグレープフルー…

トレーニング直後の食事によるグリコーゲン回復の重要性(インスリン刺激作用)

人を対象とした実験で、70分のランニング後、グルコースを運動直後に摂取させた場合と2時間後に摂取させた場合で、筋肉のグリコーゲン補充にどのような違いが見られるかが比較されました。 その結果、最初の2時間のグリコーゲン合成量は、グルコースをまだ摂…

食事の炭水化物(糖質)が肝臓と筋肉のグリコーゲンに合成される生理学的メカニズム

食事で摂取する主たる炭水化物のデンプン(グルコースが数百から数千結合した多糖類)は、小腸でアミラーゼによってマルトース(グルコースが2つ結合した二糖類)に分解され、さらに、マルターゼによってグルコースにまで消化されます。 そのグルコースの一…

筋肉と肝臓のグリコーゲン(糖質)が筋肉運動に働く生理学的システム

筋肉は筋肉内に貯蔵されているグリコーゲンを一度グルコースに分解してからエネルギー代謝を経てATPを産生します。 ※また、筋肉は肝臓に貯蔵されているグリコーゲンから分解・放出されている血中のグルコースを筋肉内に取り込み、それをエネルギー代謝で分解…

運動前・運動中の分岐鎖アミノ酸(BCAA)摂取の生理学的効果

20種類のアミノ酸の中でバリン、ロイシン、イソロイシンは分岐鎖アミノ酸(balanceed-chain amino acids;BCAA)に分類される必須アミノ酸です。 ※筋肉タンパク質中に含まれるアミノ酸で、自然界の多くのタンパク質にはバリン、ロイシン、イソロイシンがほぼ1…

タンパク質摂取において生理学的観点からのトレーニング直後と3時間後の違い

トレーニング後の身体のダメージの修復を急ぎ、消耗・漏出したものを再合成、補充しなければなりません。 ※基本的にトレーニング終了後直後の出来るだけ早い時期に、インスリン分泌刺激性の糖質とタンパク質を合わせて摂取するのが効果的であることが明らか…

エネルギー供給機構の糖質・脂質・タンパク質の生理学(スポーツ栄養学)

糖質(炭水化物) 糖質は身体の中では血中グルコース(血糖)、肝グリコーゲン、筋グリコーゲンの形で存在しています。 身体含有量は血中グルコースが約5g、肝グリコーゲンが約70~100g、筋グリコーゲンが300~400gになります。 ※糖質は約4kcalのエネルギ…

高強度レジスタンストレーニング後の回復のための糖質の種類の選択

回復のための糖質の種類 アスリートが運動後に摂取するCHOの種類は、グリコーゲンの再合成の速さに影響を及ぼします。 グルコース(ブドウ糖)/スクロース(ショ糖)を含む食物やグリセミック指数の高い食品および飲料が理想です。 グリセミック指数の高い食…