Nakajima整骨院Official Blog

世界中の治療やトレーニングを研究してます。2013年アスリートの治療に特化したNakajima整骨院を横浜市に開業。🇦🇹元SV Hornトレーナー/柔道整復師/NASM-PES/NSCA-CPT/初級がい者スポーツ指導員/WFA Periodization Specialist。

血流

アキレス腱障害と伸張性トレーニング(腱の疼痛知覚を低下、細胞間情報伝達を通じてコラーゲン沈着、基質成分回復を促がし治癒を向上させる)

アキレス腱障害はオーバーユースを原因とする変性過程であり、炎症細胞は存在しませんが、コラーゲン線維構造が変化することによって腱が負荷パターンの変化に対応しきれなくなります。 コラーゲン線維の損失に加えて線維の架橋結合も失われるために、腱の強…

水分補給状態の実用的測定法(体水分の代謝回転は、体液と電解質の移動によって水分が失われることで起こるほか、肺や皮膚、腎臓からの水分喪失によっても生じる)

水分補給状態の評価には、少なくとも13種の手法が用いられ、循環機能、生化学反応、体温調節その他の生理過程を媒介します。 また、体水分の代謝回転は、体液と電解質の移動によって水分が失われることで起こるほか、肺や皮膚、腎臓からの水分喪失によっても…

肩こり・頸部痛

肩こりの症状で悩んでいる方はたくさんいるのではないでしょうか? 厚生労働省による国民生活基礎調査(2015年度)における有訴者率で男の2位、女の1位を占める症状となっています。 肩こりと言われますが、後頚部から上背部にかけての筋緊張感、重圧感、鈍…

血圧と血行動態(BRジュースの摂取は血圧を有意に低下させ、拡張期BPが5%(-4mmHg)、収縮期BPが3%(-4mmHg)低下したことを明らかにした)

血圧と血行動態 BRジュースの形態で摂取される有機亜硝酸塩は、安静時の収縮期および拡張期血圧(BP)を一時的に低下させる効果があることが示されています。 Vanhataloは、BRジュースの摂取は血圧を有意に低下させ、拡張期BPが5%(-4mmHg)、収縮期BPが3%(-4m…

亜硝酸塩の摂取(血中硝酸塩を増加させることは、血行動態に好ましい変化をもたらし、短期的な運動パフォーマンスの向上をもたらす可能性があることが示されている)

血管の拡張とパフォーマンス 血管の拡張を促進することにより活動中の筋への血流を増やすことは、有酸素性および無酸素性双方のパフォーマンスにおける運動容量を増大させます。 さらに、血流の増加により栄養補給も増加するため、回復を促進する可能性もあ…

一酸化窒素と血流(血流の調整には、血流依存制性血管拡張、筋収縮誘発性の抵抗血管のゆがみ、エンドセリン、アデノシン、プロスタサイクリンなどの化学物質の変質、および体温、pO2、pCO2、pHなどの変化がかかわっている)

エクササイズと血流 エクササイズ中及びエクササイズ後の血流の調整には、他の複数の機序がかかわっていることも知っておくことが必要になります。 血流の調整には、血流依存制性血管拡張、筋収縮誘発性の抵抗血管のゆがみ、エンドセリン、アデノシン、プロ…

分析されたMIPSの約60%が血流の改善を目的とした独自配合成分を含む(補助成分の多くを補給した際の血流の増加、特に運動中の血流増加のメカニズムは、大部分が血管拡張効果をもつNO(一酸化窒素、血管拡張物質)の合成を増やすことが中心になる)

血流の改善とMIPS 分析されたMIPSの約60%が血流の改善を目的とした独自配合成分を含み、一般的には「最大ポンプ/血管分布」あるいは「一酸化窒素ブレンド」などのマーケティング用語があります。 血管拡張特性を有し、その結果、血流を改善する効果があると…

MIPSはパフォーマンスの向上の理論的なメカニズムに対する特性を有する(血流を増やすことにより、血液と栄養に対する要求に応え、筋タンパク質の分解に抵抗してタンパク質バランスの維持や保護を促進することにより、減少したエネルギーの供給と貯蔵に対処し、酸化ストレスから保護し、ROS/RNSの産生と戦う)

精神的な鋭敏性の向上とMIPS 例えば、フベルジンAの補給がアルツハイマー病のお客の記憶と学習を促進することが知られているため、多くのMIPS(11%)にフベルジンAが含まれています。 しかし、フベルジンAには、パフォーマンスの改善に関するエビデンスはない…

クライマーの筋収縮のタイプ(平均38%は静止姿勢に費やされ、そのことは酸素摂取量に比べて心拍数が過度に高い原因となるが、これは筋代謝受容器反射の活性が促進されるために起こる)

等尺性筋力および持久力 等尺性筋活動は、クライマーが手にチョークをつける、ボルトをクリップする、ギアを設置する、次のムーブを考えるなどの目的で静止する際に身体を安定させる働きをするため、ロッククライミングにおいて重要な役割を担います。 クラ…

筋線維サイズと筋力に対するL-アルギニンの効果(サテライト細胞の活性化を示す骨格筋マーカーの上昇と全体的なDNAの増加する)

アルギニンと筋肥大 L-アルギニンが、、健康な人の細胞レベルで与える影響、特に筋サイズや筋力に及ぼす変化に関しては、情報は少なく、L-アルギニンは、運動に反応し骨格筋のタンパク質合成と血流を増大させる可能性があると仮定されています。 しかし、最…

L-アルギニンの持久系パフォーマンスの対する効果(ランニング中の疲労困憊までの時間が延長され、ATPの加水分解と骨格筋の力発揮との関連性を改善、酸素需要量が減少グルコースの吸収を増大させ、血中乳酸濃度を低下させる)

L-アルギニンとは L-アルギニンによる血管拡張の増大はより大きな基質の利用をもたらし、老廃物を除去し、エネルギー効率を高め、持久系競技中に疲労困憊に達するまでの時間を延長すると仮定されています。 これまでの研究では、運動中にL-アルギニンを補給…

トレーニングと一酸化窒素:NOの生理学(血小板粘着や白血球付着を低減し、平滑筋の細胞増殖を抑え、神経伝達と筋萎縮/肥大を調節し、衛星細胞の増殖を刺激し、血流と免疫防御を向上させる)

一酸化窒素とは 一酸化窒素(NO)は、平滑筋の血管弛緩をもたらすことが発見され、そのため、当初は内皮由来弛緩因子と呼ばれていました。 NOは、一酸化窒素合成酵素として知られる酵素群により、アミノ酸のひとつであるL-アルギニン、酵素、および様々な補因…

運動誘発性筋痙攣の歴史的考察(最大限まで短縮した筋の等尺性収縮により、筋膜が伸張し、活動中の筋への血流が完全に止まることにより痛み受容器と化学受容器から中枢神経系(CNS)に求心性シグナルが伝わる)

運動誘発性筋痙攣の起源 過去1世紀にわたり、運動誘発性筋痙攣(EAMC:Exercise-induced muscle cramps)の原因について多くの理論が示されていますが、その仮説のひとつが痙攣の「心身起源(Psychosomatic Origin)」説になります。 痙攣が過敏な反応や極度の緊…

赤血球に含まれるヘモグロビンは血液のO2運搬能力に関与するために40~50%低下した場合、酸素摂取量が減少し有酸素性能力が低下する

ヘモグロビンと酸素運搬能 赤血球に含まれるヘモグロビン(Hb)は酸素(O2)と結合するので、血液のO2運搬能力はHb量に依存します。 したがって、Hb量が減少すれば血液のO2運搬能力が低下し酸素摂取量(mVO2)が減少します(例:貧血)。 ※Hb濃度の40~50%の…

筋力強化を考えた場合のセット間ストレッチの活用(活動中の筋に乳酸、水素イオン、ナトリウムイオンとリン酸の蓄積をもたらし、エクササイズに対する成長ホルモン(GH)の応答に重要)

受動的ストレッチと能動的ストレッチ 受動的および能動的ストレッチ、特に能動的ストレッチは、局所の筋の酸素摂取を一時的に妨げる可能性が高く、それが血管の局所的な圧迫に起因することはかなり広く認められています。 他にも多くの研究者が、血流の制限…

必須アミノ酸とトレーニング(トレーニング直前の投与は、トレーニング直後の投与と比べ、160%筋同化作用増大をもたらす)

必須アミノ酸とエクササイズ レジスタンストレーニングは、タンパク質の合成と分解の両方を刺激します。 しかし、タンパク質合成のほうがより多く刺激されるために、骨格筋におけるタンパク質のネットバランスが向上しますが、数値的にはまだマイナスになり…

アミノ酸と筋損傷(乳酸は「代謝によってできるもの」であるのに対して、筋肉痛は「筋が瞬間的に大きな力を出そうとして生じた力学的な原因によるもの」)

筋肉痛は筋の損傷(乳酸蓄積の関係) 以前は、乳酸が溜まっているから筋肉痛が起こるといわれてきました。 しかし、乳酸が多くできるのは運動直後であって、運動後30分や1時間もたてば、元の低いレベルに戻ります。 一方、筋肉痛は運動し終わってすぐ生じるわ…

ランニング時には遅筋(ヒラメ筋)への血流量は速筋タイプの筋(腓腹筋)への血流量より3~4倍多くなる

運動時にはO2や栄養を必要とする活動筋や、体温調節が必要な皮膚へ血流が優先的に配分されます。 運動とともに、激しく拍動する心臓へも多くの血流が供給されます。 このとき、腎臓や消化器官への血流は維持されるものの、脳への血流は維持されています。 …

スローリフトとアイソメトリックトレーニング(等尺性収縮)

筋内血流と筋力発揮を考えるとアイソメトリックトレーニングが良いとなりますが、一概にそうではありません。 アイソメトリックトレーニングは外に向かって仕事をするわけではなく、加えて筋の生産する熱も極めて少ないという性質があります。 ※したがって…

種目配列の実際の影響(プレエグゾーション法:事前疲労法)

プライオリティの原則(疲労が蓄積してないうちに最も重要な部分のトレーニングを行う)にあえて逆らい、逆の順にトレーニングを行うという方法もあり、これをプレエグゾーション法といいます。 ※大胸筋をトレーニングするときに、トライセプスプレスダウン…

トレーニングと筋肉の血流(循環抵抗の生理学的変化)

筋肉中の個々の筋線維内の周りには毛細血管が取り巻いていて、その両端はそれぞれ動脈と静脈につながります。 ※筋肉中の中の血流は、筋内の収縮の仕方に依存して変わります。 上記のことがよく知られているのが筋力発揮のレベルと血流との関係です。 https:/…

クールダウンの取り組みと内容

アイスバケツ 90㍑のバケツに下肢を入れ、下肢全体をアイシングし、また、足関節のみの場合は小さなバケツを準備し、その中に足を入れます。 ※足関節全体を冷やす意味でもバケツに足を入れたほうが効果的になります。 初期には過度の冷却による足趾の冷却に…

パンプアップ(pump up)の生理学的メカニズム(血流量、局所性貧血)

トレーニングと筋内の血流 激しくトレーニングをすると筋内に血液が注入されるまで風船が膨れ上がったようになるので、この状態をパンプアップ(pump up)といいます。 筋肉中の個々の筋線維の周りには毛細血管が取り巻いていて、その両端はそれぞれ動脈と静…

サイズの原理の例外(エキセントリック・バリスティック・加圧トレーニング)

極めて軽い負荷を用いてトレーニングを行うとき、筋の電気的活動を記録すると、負荷を上げ(コンセントリック:短縮性筋収縮)、引き続き保持する(アイソメトリック:等尺性収縮)動作では、負荷が軽いので確かに遅筋線維が使われますが、次に負荷を下ろす…

筋持久力を高める生理学的条件と運動負荷

筋持久力運動による生理学的変化 筋持久力運動により、その筋肉の毛細血管網と動静脈吻合の発達が著しくなり、単位筋面積当たりの毛細血管数は非運動筋の約2倍、吻合数は約3倍に増加したと報告されています。 ※筋収縮が起こると、筋線維を囲んでいる4000近い…

心臓血管系トレーニングの循環器系への生理学的作用(心拍出量の増加や心拍数の減少による心臓機能の獲得、ミトコンドリアの増加、筋グリコーゲンの増加)

心臓 運動の継続により、心臓は機能的にも構造的にも変化し、心肥大が生じ、これをスポーツ心臓と呼びます。 心肥大により、運動選手やトレーニング経験者では、心拍出量が多くなります。(1回拍出量が多いために起こる) ※持久的なトレーニングでは左心室腔…

筋の持続性収縮と虚血性収縮の生理学的メカニズム

筋の痛みと筋スパズム 筋が持続的に収縮を強いられると、その結果として、その結果として筋スパズム(muscle spasm)を限局して起こしやすく、このスパズムは痛みを増悪させ、その結果スパズムが強くなるという具合に、痛み-筋スパズムの悪循環(スパズムル…

ドーピング(βアゴニスト)による筋肥大と交感神経の伝達物質(カテコールアミン)の筋肥大の関係

交感神経の主要な伝達物質であるノルアドレナリン(ノルエピネフリン)、副腎髄質から分泌されるアドレナリン(エピネフリン)などを総称してカテコールアミンと呼びます。 これらはエネルギーを活性化するとともに、心収縮力と心拍数を上げ、筋血流を増加さ…

レジスタンストレーニングと内分泌器官系の関係(ホルモン分泌・同化と異化)

主要なホルモンと内分泌器官 ホルモンとは主として内分泌器官(腺)で合成、貯蔵、分泌され、血流に乗って体内を循環し、微量で身体の機能を調整したり維持したりする物質です。 ホルモンが作用する器官を標的器官と呼びます。 ホルモンは通常、複数の標的器…